reslr
Use:
# Not on CRAN yet
#install.packages("reslr")
#devtools::install_github("maeveupton/reslr")
install_github("maeveupton/reslr")
then,
Note: The JAGS software is a requirement for this instruction sheet and refer back to main vignettes for more information.
reslr
There is a large example dataset included in the reslr
package called NAACproxydata
. In this example, we
demonstrate how to include proxy record data which is stored in a csv
file. This csv file of data can be found in the package and the
readr
function reads the csv file:
path_to_data <- system.file("extdata", "one_data_site_ex.csv", package = "reslr")
example_one_datasite <- read.csv(path_to_data)
Using the reslr_load
function to read in the data into
the reslr
package:
Select your modelling technique from the modelling options available:
Statistical Model | Model Information | model_type code |
---|---|---|
Errors in variables simple linear regression | A straight line of best fit taking account of any age and measurement errors in the RSL values using the method of Cahill et al (2015). Use for single proxy site. | “eiv_slr_t” |
Errors in variables change point model | An extension of the linear regression modelling process. It uses piece-wise linear sections and estimates where/when trend changes occur in the data (Cahill et al. 2015). | “eiv_cp_t” |
Errors in variables integrated Gaussian Process | A non linear fit that utilities a Gaussian process prior on the rate of sea-level change that is then integrated (Cahill et al. 2015). | “eiv_igp_t” |
Noisy Input spline in time | A non-linear fit using regression splines using the method of Upton et al (2023). | “ni_spline_t” |
Noisy Input spline in space and time | A non-linear fit for a set of sites across a region using the method of Upton et al (2023). | “ni_spline_st” |
Noisy Input Generalised Additive model for the decomposition of the RSL signal | A non-linear fit for a set of sites across a region and provides a decomposition of the signal into regional, local-linear (commonly GIA) and local non-linear components. Again this full model is as described in Upton et al (2023). | “ni_gam_decomp” |
For this example, it is a single site and we are interested in how it varies over time select the Noisy Input spline in time. If it was multiple sites, we recommend using a spatial temporal model, i.e. Noisy Input spline in space and time, or for decomposing the signal, i.e. Noisy Input Generalised Additive model.
Once the model is chosen use the reslr_mcmc
function to
run it:
res_one_site_example <- reslr_mcmc(
input_data = example_one_site_input,
model_type = "ni_spline_t",
CI = 0.95
)
The convergence of the algorithm is examined and he parameter estimates from the model can be investigated using the following:
The model fit results can be visualised using the following function:
plot(res_one_site_example,
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_type = "model_fit_plot"
)
For the rate of change plot use:
To examine the data creating these plots the user types the following:
output_dataframes <- res_one_site_example$output_dataframes
head(output_dataframes)
#> Longitude Latitude SiteName data_type_id Age pred
#> 1 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -800 -2.313310
#> 2 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -750 -2.317785
#> 3 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -700 -2.318153
#> 4 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -650 -2.314614
#> 5 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -600 -2.307366
#> 6 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -550 -2.296609
#> upr lwr rate_pred rate_upr rate_lwr CI
#> 1 -2.400443 -2.224782 -0.13191082 -0.64955833 0.4020742 95%
#> 2 -2.387790 -2.245368 -0.04777058 -0.48639886 0.4040908 95%
#> 3 -2.376753 -2.258366 0.03237945 -0.33312580 0.4117527 95%
#> 4 -2.365797 -2.262238 0.10853909 -0.19219641 0.4192663 95%
#> 5 -2.356333 -2.256858 0.18070832 -0.05893546 0.4312327 95%
#> 6 -2.345364 -2.246664 0.24888716 0.05739611 0.4478925 95%
To examine the additional options in the reslr
package,
see the main vignette.